欧美一级a免费放视频,欧美一级a免费放视频_丰满年轻岳欲乱中文字幕电影_欧美成人性一区二区三区_av不卡网站,99久久精品产品给合免费视频,色综合黑人无码另类字幕,特级免费黄片,看黃色录像片,色色资源站无码AV网址,暖暖 免费 日本 在线播放,欧美com

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

COM3524代做,、代寫Java,Python編程設(shè)計(jì)

時(shí)間:2024-02-06  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



 COM**4 Bio-inspired Computing

Lecture 7a Introduction to Simulation

 Objectives of Lecture 7a-c

1. Tointroducetheconceptofapredictive, mechanistic model

2. Tointroducetwoalternativeapproachesto modelling in the context of understanding population dynamics:

 Equation-based Modelling

 Individual (agent-based) Modelling

3. Topresenttheadvantages/disadvantagesofeach of these approaches.

 Bi-directional process

SCIENCE

ENGINEERING

 Bio-inspired computing

  Pallavi Deshpande

 Computational exploration of real-world systems

Biological Physical ?Social Financial ?Artificial Intelligence

Engineered hardware Algorithms

Software protection systems

 What is a model?

Means different things to different people

Method for structuring and validating

knowledge

  “ All models are wrong, but some models are useful”

Box, G.E.P., Robustness in the strategy of scientific model building, In Robustness in Statistics, R.L. Launer and G.N. Wilkinson, Editors.

 Data driven models

 Aim to derive knowledge from large datasets

 Use statistics or machine learning methods to find a

relationship between inputs and outputs

 Allows us to ask questions like “given a data set A,

what is the probability of outcome B?”

 Does not attempt to consider details of mechanisms

 “Top down” approach
 Mechanistic Models

 Starts from known or assumed mechanism and attempts to predict results (simulation)

 Many approaches (ODEs, finite element, agent-based....)

 Allows us to explore “what if?” scenarios

 “Bottom up” approach

 What do you notice about the populations of hares and lynxes?

Can you explain why this occurs?

Can a mathematical/ computational model simulate this ?

https://www.youtube.com/watch?v=swiSMSWgbKE

Population Models

 A Simple Population Model

 Considerapopulationofself-replicatingaggressiveorganisms that live in a space of fixed size.

 Weareinterestedinknowinghowthesizeofthepopulation changes from day to day.

 Let the population number on day t be N(t). This is our model variable.

 Considertwoprocessesthatcontributetochangesinthe population size: birth and death.

 A Simple Population Model

General form of the model is

N(t+1) = N(t) + number of births – number of deaths

Assumptions:

- population is large enough that we can approximate N(t), which is an integer, by a real number n(t).

- number of births per day is proportional to population size

(self-replicating organisms). where B is the birth rate (a model parameter).

- number of births = Bn(t),

 A Simple Population Model
 Assume there are two processes contributing to the death rate:

- organisms die naturally, at a rate proportional to the population size n(t)

- when organisms meet, they fight to the the death, and there is always a clear victor (one death per encounter).

Assume chance of meeting is proportional to square of the population density, which is proportional to n(t)2 (since they live in a space of fixed area).

 Hence

death rate = D0 n(t) + D n(t)2,

where

D0 is the natural death rate ;

D depends on the area of the space in which the organisms live D0 , D are parameters (constants).

 A Simple Population Model

Putting all this together, we obtain the model:

n(t+1) = n(t) + Bn(t) – D0n(t) – Dn(t)2

Or, more generally:

n(t+1) = f(n(t); B, D0, D)

   model VARIABLE

model PARAMETERS

 A Simple Population Model

This illustrates some important points:

1. We have made a number of simplifying assumptions in order to formulate the model.

2. We have identified what we believe to be the relevant processes that underlie the change in the population.

3. We have used parameters to encode the details of those processes. Even if we don’t know those details, we can study the outcome of the model for different values of those parameters.

 What can we do with this model ?

n(t+1) = n(t) + Bn(t) – D0n(t) – Dn(t)2

We might want to use this to find out what the population n(t) will be on each day of the next week, given that we measure the population to be 500 on day 1.

 We can specify values for the parameters and use the above formula iteratively to evaluate the population each day. This is simulation (synthesis).

 Alternatively, we can use the mathematical expression above to deduce some general properties of the system. This is called analysis.

 NEXT: Lecture 7b) Analysis and Synthesis for an equation-based model
如有需要,請(qǐng)加QQ:99515681 或WX:codehelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代做CSC477、代寫Python,C++設(shè)計(jì)編程
  • 下一篇:代做Micro Language Compiler
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    戴納斯帝壁掛爐全國售后服務(wù)電話24小時(shí)官網(wǎng)400(全國服務(wù)熱線)
    戴納斯帝壁掛爐全國售后服務(wù)電話24小時(shí)官網(wǎng)
    菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
    菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話2
    美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時(shí)客服熱線
    美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時(shí)
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號(hào)線
    合肥機(jī)場巴士4號(hào)線
    合肥機(jī)場巴士3號(hào)線
    合肥機(jī)場巴士3號(hào)線
  • 上海廠房出租 短信驗(yàn)證碼 酒店vi設(shè)計(jì)