欧美一级a免费放视频,欧美一级a免费放视频_丰满年轻岳欲乱中文字幕电影_欧美成人性一区二区三区_av不卡网站,99久久精品产品给合免费视频,色综合黑人无码另类字幕,特级免费黄片,看黃色录像片,色色资源站无码AV网址,暖暖 免费 日本 在线播放,欧美com

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

CEG 4136代做,、代寫Java/c++設(shè)計(jì)編程
CEG 4136代做,、代寫Java/c++設(shè)計(jì)編程

時(shí)間:2024-09-23  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



CEG 4136 Computer Architecture III 
Fall 2024 
 
To be submitted September 28, 11:59 p.m. 
 
Lab1: Optimizing Forest Fire Simulation with CUDA 
  
1. Introduction 
In this lab, you will work on a forest fire simulation code that uses a 1000×1000 grid. The fire 
starts at 100 distinct locations in the forest. The provided code is implemented sequentially. It 
simulates the propagation of fire, the burning of trees, and their eventual extinction. The grid is 
displayed using the OpenGL library, where each cell represents a tree or an empty space. 
 
The objective of this lab is to parallelize the existing code using CUDA C to leverage the power 
of graphics processing units (GPUs) to make the simulation faster and more efficient. You will 
identify parts of the code that are most appropriate for optimization, such as the forest update 
process, and transform them to run in parallel. 
 
2. Objective 
The primary objective of this lab is to convert the sequential code into an optimized version using 
CUDA C to accelerate the simulation. You will learn to: 
• Identify code sections that can be parallelized. 
• Use CUDA C to run computations in parallel on a GPU. 
• Measure the performance gains achieved through parallelization. 
 2 
 
3. Development Platform 
Development and optimization of the program will be done on machines equipped with CUDAcapable
 GPUs. The tools to be used include: 
• CUDA Toolkit (12.6 or later) for compiling CUDA programs. 
• Visual Studio 2022 for editing and debugging the code. 
• CUDA Debugger for testing and profiling your CUDA kernels. 
 
You will use OpenGL for rendering the simulation, and work will be carried out on workstations 
with NVIDIA GPUs that support CUDA. 
4. Tasks 
Step 1: Understand the Starter Code 
• Analyze the provided code. It is a forest fire simulation where each cell in the grid 
represents either a tree or an empty space. Fire starts at 100 random locations, spreads to 
neighboring cells, and burning trees eventually extinguish after a set amount of time. 
Step 2: Identify Opportunities for Parallelization 
• Grid updating is a significant part of the code that can be parallelized. Each cell in the grid 
can be updated independently of the others. 
• Analyze the updateForest() function, which is responsible for updating the state of 
burning trees and propagating fire to neighboring cells. This is the section that needs to be 
optimized using CUDA. 
Step 3: Implement Parallelization with CUDA C 
• CUDA Initialization: Allocate memory for the grid (forest) and burn time (burnTime) on 
the GPU using cudaMalloc(). 
• CUDA Kernel: Implement a kernel that updates the state of each cell in the forest in 
parallel. 
• Parallel Execution: Ensure that each cell in the grid is updated in parallel using multiple 
threads on the GPU. 
• Block and Thread Management: Divide the grid into CUDA thread blocks for optimized 
execution. 
Step 4: Measure Performance 
Measure the runtime of the sequential program and compare it to the optimized CUDA version. 
Use CUDA profiling tools to identify performance gains and any further possible optimizations. 
 3 
 
5. Deliverables 
Each team must submit a report containing the following: 
• An explanation of the parts of the code that were parallelized. 
• The modified source code with the CUDA implementation. 
• A performance analysis showing the execution times before and after optimization. 
• Screenshots of the running program with visual simulation results. 
 
6. Evaluation Criteria 
The following criteria will be considered in the evaluation: 
• Correctness: The program must work correctly after optimization. The simulation should 
behave the same as the sequential version. 
• Effective Parallelization: The code should demonstrate proper and effective use of CUDA, 
with significant parallelization of the appropriate parts of the program. 
• Performance Improvement: Measurable performance gains should be demonstrated with 
the CUDA version. The difference in execution times between the sequential and parallel 
versions must be clearly explained. 
• Code Quality: The code should be well-structured, commented, and follow good 
programming practices. 
 
Note: This lab serves as an introduction to parallelization using CUDA, so it's important to have 
a solid understanding of the basics of CUDA before you begin coding. 

請(qǐng)加QQ:99515681  郵箱:[email protected]   WX:codinghelp





 

掃一掃在手機(jī)打開當(dāng)前頁(yè)
  • 上一篇:COMP5328代做,、代寫Python程序語(yǔ)言
  • 下一篇:CRICOS編程代做、代寫Java程序設(shè)計(jì)
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線)
    戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)
    菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
    菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話2
    美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)客服熱線
    美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 上海廠房出租 短信驗(yàn)證碼 酒店vi設(shè)計(jì)