欧美一级a免费放视频,欧美一级a免费放视频_丰满年轻岳欲乱中文字幕电影_欧美成人性一区二区三区_av不卡网站,99久久精品产品给合免费视频,色综合黑人无码另类字幕,特级免费黄片,看黃色录像片,色色资源站无码AV网址,暖暖 免费 日本 在线播放,欧美com

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代做MLE 5217,、代寫(xiě)Python程序設(shè)計(jì)
代做MLE 5217、代寫(xiě)Python程序設(shè)計(jì)

時(shí)間:2024-10-23  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Dept. of Materials Science & Engineering NUS
MLE 5217 : Take-Home Assignments
Objectives
Based on the chemical composition of materials build a classiffcation model to distinguish metals and non-metals
(Model 1), and then build a regression model to predict the bandgap of non-metallic compounds (Model 2).
Please use a separate jupyter notebook for each of the models.
Data
The data contains the chemical formula and energy band gaps (in eV) of experimentally measured compounds.
These measurements have been obtained using a number of techniques such as diffuse reffectance, resistivity
measurements, surface photovoltage, photoconduction, and UV-vis measurements. Therefore a given compound
may have more than one measurement value.
Tasks
Model I (30 marks)
Dataset: Classiffcation data.csv
Fit a Support Vector Classiffcation model to separate metals from non-metals in the data. Ensure that you:
• Follow the usual machine learning process.
• Use a suitable composition based feature vector to vectorize the chemical compounds.
• You may use your judgement on how to differentiate between metals & non-metals. As a guide, two possible
options are given below.
Option 1 : for metals Eg = 0, and Non-metals Eg > 0
Option 2: for metals Eg ≤ 0.5, for non-metals Eg > 0.5
• Use suitable metrics to quantify the performance of the classiffer.
• For added advantage you may optimize the hyper-parameters of the Support Vector Classiffer. Note: Optimization
 algorithms can require high processing power, therefore may cause your computer to freeze (Ensure
you have saved all your work before you run such codes). In such a case you may either do a manual
optimization or leave the code without execution.
• Comment on the overall performance of the model.
Model II (30 marks)
Dataset: Regression data.csv
Fit a Regression Equation to the non-metals to predict the bandgap energies based on their chemical composition
• Use a suitable composition based feature vector to vectorize the chemical compounds. You may try multiple
feature vectors and analyse the outcomes.
• You may experiment with different models for regression analysis if required.
• Comment on the overall performance of the model and suggest any short-comings or potential improvements.
September 2024Important : Comments
• Write clear comments in the code so that a user can follow the logic.
• In instances where you have made decisions, justify them.
• In instances where you may have decided to follow a different analysis path (than what is outlined in the
tasks), explain your thinking in the comments.
• Acknowledge (if any) references used at the bottom of the notebook.
Submission
• Ensure that each of the cells of code in the ffnal Jupyter notebooks have been Run for output (Except for
the hyper-parameter optimization if any).
• The two models (I and II) have been entered in two separate notebooks.
• Name the ffles by your name as ”YourName 1.ipynb” and ”YourName 2.ipynb”
• It is your responsibility to Ensure that the correct ffles are being submitted, and the ffle extensions
are in the correct format (.ipynb).
• Submission will be via Canvas, and late submissions will be penalized.
Evaluation
The primary emphasis will be on the depth and thoroughness of your approach to the problem. Key areas of focus
will include:
* Data Exploration: Demonstrating a thorough investigation of the data, exploring different analytical
possibilities, and thoughtfully selecting the best course of action.
* Implementation: Translating your chosen approach into clean and efffcient code.
* Machine Learning Process: Executing the machine learning process correctly and methodically, ensuring
proper data handling, model selection, and evaluation.
* Clarity of Explanation: Providing clear explanations of each step, with logical reasoning for the decisions made.
*Critical Analysis: Identifying any limitations of the approach, suggesting potential improvements, and making
relevant statistical inferences based on the results.
================================================================


請(qǐng)加QQ:99515681  郵箱:[email protected]   WX:codinghelp






 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:代寫(xiě)ISAD1000,、代做Java/Python程序設(shè)計(jì)
  • 下一篇:代寫(xiě)B(tài)attleship ,、代做Game 設(shè)計(jì)程序
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線)
    戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)
    菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
    菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話2
    美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)客服熱線
    美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 上海廠房出租 短信驗(yàn)證碼 酒店vi設(shè)計(jì)