欧美一级a免费放视频,欧美一级a免费放视频_丰满年轻岳欲乱中文字幕电影_欧美成人性一区二区三区_av不卡网站,99久久精品产品给合免费视频,色综合黑人无码另类字幕,特级免费黄片,看黃色录像片,色色资源站无码AV网址,暖暖 免费 日本 在线播放,欧美com

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫INFS2044、代做Python設(shè)計編程
代寫INFS2044、代做Python設(shè)計編程

時間:2024-12-19  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



INFS2044 Assignment 2 Case Study 
 
In this assignment, you will be developing a system for finding images based on the objects 
present in the images. The system will ingest images, detect objects in the images, and 
retrieve images based on labels associated with objects and by similarity with an example 
image. 
 
Use Cases 
 
The system supports the following use cases: 
 
• UC1 Ingest Image: User provides an image, and System stores the image, identifies 
objects in the image, and records the object types detected in the image in an index. 
 
• UC2 Retrieve Objects by Description: User specifies a list of object types, and the 
system returns the images in its index that match those listed. The system shall 
support two matching modes: 
 
o ALL: an image matches if and only if an object of each specified type is 
present in the image 
o SOME: an image matches if an object of at least one specified type is present 
in the image 
 
• UC3 Retrieve Similar Images: User provides an image, and the system retrieves the 
top K most similar images in order of descending similarity. The provided image may 
or may not already be in the system. The similarity between two images is 
determined based on the cosine similarity measure between the object types 
present in each image. The integer K (K>1) specifies the maximum number of images 
to retrieve. 
 
• UC4 List Images: System shows each image and the object types associated with 
each image in the index. 
 
 
 Example Commands 
 
The following are example commands that the command line frontend of the system shall 
implement: 
 
UC1: 
 
$ python image_search.py add example_images/image1.jpg 
Detected objects chair,dining table,potted plant 
 
$ python image_search.py add example_images/image2.jpg 
Detected objects car,person,truck 
 
$ python image_search.py add example_images/image3.jpg 
Detected objects chair,person 
 
$ python image_search.py add example_images/image4.jpg 
Detected objects car 
 
$ python image_search.py add example_images/image5.jpg 
Detected objects car,person,traffic light 
 
$ python image_search.py add example_images/image6.jpg 
Detected objects chair,couch 
 
UC2: 
 
$ python image_search.py search --all car person 
example_images/image2.jpg: car,person,truck 
example_images/image5.jpg: car,person,traffic light 
2 matches found. 
 
$ python image_search.py search --some car person 
example_images/image2.jpg: car,person,truck 
example_images/image3.jpg: chair,person 
example_images/image4.jpg: car 
example_images/image5.jpg: car,person,traffic light 
4 matches found. 
 
UC3: 
 
$ python image_search.py similar --k 999 example_images/image3.jpg 
1.0000 example_images/image3.jpg 
0.5000 example_images/image6.jpg 
0.4082 example_images/image1.jpg 
0.4082 example_images/image2.jpg 
0.4082 example_images/image5.jpg 
0.0000 example_images/image4.jpg 
 
$ python image_search.py similar --k 3 example_images/image3.jpg 
1.0000 example_images/image3.jpg 
0.5000 example_images/image6.jpg 0.4082 example_images/image1.jpg 
 
$ python image_search.py similar example_images/image7.jpg 
0.5774 example_images/image1.jpg 
 
UC4: 
 
$ python image_search.py list 
example_images/image1.jpg: chair,dining table,potted plant 
example_images/image2.jpg: car,person,truck 
example_images/image3.jpg: chair,person 
example_images/image4.jpg: car 
example_images/image5.jpg: car,person,traffic light 
example_images/image6.jpg: chair,couch 
6 images found. 
 
Other requirements 
 
Input File Format 
 
The system shall be able to read and process images in JPEG format. 
 
For UC2, you can assume that all labels are entered in lowercase, and labels containing 
spaces are appropriately surrounded by quotes. 
 
Output Format 
 
The output of the system shall conform to the format of the example outputs given above. 
 
Unless indicated otherwise, the output of the system does not need to be sorted. 
 
For UC3, the output shall be sorted in descending order of similarity. That is, the most 
similar matching image and its similarity shall be listed first, followed by the next similar 
image, etc. 
 
For UC4, the output shall be sorted in ascending alphabetical order. 
 
Internal Storage 
 
You are free to choose either a file-based storage mechanism or an SQLite-based database 
for the implementation of the Index Access component. 
 
The index shall store the file path to the image, not the image data itself. 
 
Object detection 
 The supplied code for object detection can detect ~** object types. 
 
Future variations 
 
• Other object detection models (including external cloud-based systems) could be 
implemented. 
• Additional object types could be introduced. 
• Additional query types could be introduced. 
• Other similarity metrics could be implemented. 
• Other indexing technologies could be leveraged. 
• Other output formats (for the same information) could be introduced. 
 
These variations are not in scope for your implementation in this assignment, but your 
design must be able to accommodate these extensions largely without modifying the code 
that you have produced. 
 
Decomposition 
 
You must use the following component decomposition as the basis for your implementation 
design: 
 
The responsibilities of the elements are as follows: 
 
Elements Responsibilities 
Console App Front-end, interact with the user 
Image Search Manager Orchestrates the use case processes 
Object Detection Engine Detect objects in an image 
Matching Engine Finds matching images given the object types 
Index Access Stores and accesses the indexed images 
Image Access Read images from the file system 
 
You may introduce additional components in the architecture, provided that you justify why 
these additional components are required. 
 
 Scope & Constraints 
 
Your implementation must respect the boundaries defined by the decomposition and 
include classes for each of the elements in this decomposition. 
 
The implementation must: 
• run using Python 3.10 or higher, and 
• use only the Python 3.10 standard libraries and the packages listed in the 
requirements.txt files supplied with this case study, and 
• not rely on any platform-specific features, and 
• extend the supplied code, and 
• correctly implement the functions described in this document, and 
• it must function correctly with any given input files (you can assume that the entire 
content of the files fits into main memory), and 
• it must include a comprehensive unit test suite using pytest, and 
• adhere to the given decomposition and design principles taught in this course. 
 
Focus your attention on the quality of the code. 
 
It is not sufficient to merely create a functionally correct program to pass this assignment. 
The emphasis is on creating a well-structured, modular, object-oriented design that satisfies 
the design principles and coding practices discussed in this course. 
 
Implementation Notes 
 
You can use the code supplied in module object_detector.py to detect objects in 
images and to encode the tags associated with an image as a Boolean vector (which you will 
need to compute the cosine similarity). Do not modify this file. 
 
You can use the function matplotlib.image.imread to load the image data from a file, and 
sklearn.metrics.pairwise.cosine_similarity to compute the cosine similarity between two 
vectors representing lists of tags. 
 
請加QQ:99515681  郵箱:[email protected]   WX:codinghelp




 

掃一掃在手機打開當(dāng)前頁
  • 上一篇:DSCI 510代寫,、代做Python編程語言
  • 下一篇:代寫FN6806,、代做c/c++,,Python程序語言
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)400(全國服務(wù)熱線)
    戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)
    菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話24小時服務(wù)熱線
    菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話2
    美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時客服熱線
    美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 上海廠房出租 短信驗證碼 酒店vi設(shè)計