欧美一级a免费放视频,欧美一级a免费放视频_丰满年轻岳欲乱中文字幕电影_欧美成人性一区二区三区_av不卡网站,99久久精品产品给合免费视频,色综合黑人无码另类字幕,特级免费黄片,看黃色录像片,色色资源站无码AV网址,暖暖 免费 日本 在线播放,欧美com

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

EIE553代做、代寫EIE553程序語言
EIE553代做,、代寫EIE553程序語言

時(shí)間:2025-03-02  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



EIE553 Lab 1 1
EIE553 Security in Data Communication
Lab 1: RSA Public-Key Encryption
and Signatures
Report Deadline: 11:59 pm, Mar. 2, 2025 HKT
(Credits: SEED Labs 2.0 by Prof. Du, Wenliang)
1 Overview
RSA (Rivest–Shamir–Adleman) is one of the first public-key cryptosystems and is widely used for secure 
communication. The RSA algorithm first generates two large random prime numbers, and then use them 
to generate public and private key pairs, which can be used to do encryption, decryption, digital signature 
generation, and digital signature verification. The RSA algorithm is built upon number theories, and it can 
be quite easily implemented with the support of libraries.
The learning objective of this lab is for students to gain hands-on experiences on the RSA algorithm. 
From lectures, students should have learned the theoretic part of the RSA algorithm, so they know math ematically how to generate public/private keys and how to perform encryption/decryption and signature 
generation/verification. This lab enhances student’s understanding of RSA by requiring them to go through 
every essential step of the RSA algorithm on actual numbers, so they can apply the theories learned from 
the class. Essentially, students will be implementing the RSA algorithm using the C program language. The 
lab covers the following security-related topics:
• Public-key cryptography
• The RSA algorithm and key generation
• Big number calculation
• Encryption and Decryption using RSA
• Digital signature
• X.509 certificate
Lab environment: The SEED Lab series (including this one) has been tested on the SEED Ubuntu 20.04
VM. In our lab at CF105, the VM is pre-built and you can connect to it via:
1. Run Hyper-V Virtual Machine Connection
2. Select “SEED Ubuntu 20.04”
EIE553 Lab 1 2
3. Click Start
4. Input username: seed and password: dees
NOTE: The Ubuntu 20.04 VM is not strictly necessary. You can complete or implement the tasks 
below using your preferred IDE (on your own PC) and programming language (though C/C++
is recommended).
NOTE: The PC might REBORN AFTER REBOOT AND SHARED WITH OTHER STUDENTS. 
Save your work in an external drive and back up your files before rebooting or shutting down.
You also can download a pre-built image from the SEED website, and run VM on your own PC.
The setup can be found: https://seedsecuritylabs.org/labsetup.html (for either Intel/Apple/AMD CPU)
How to build SEED VM: https://github.com/seed-labs/seed-labs/blob/master/manuals/vm/seedvm-from scratch.md
A step-by-step guideline (prepared by TAs) on how to build SEED VM on a Windows PC has been 
uploaded to Blackboard for your reference.
2 Background
The RSA algorithm involves computations on large numbers. These computations cannot be directly con ducted using simple arithmetic operatorsin programs, because those operators can only operate on primitive 
data types, such as 32-bit integer and 64-bit long integer types. The numbers involved in the RSA algorithms 
are typically more than 512 bits long. For example, to multiple two 32-bit integer numbers a and b, we just
EIE553 Lab 1 3
// Assign a value from a decimal number string
BN_dec2bn(&a, "12345678901112231223");
// Assign a value from a hex number string
BN_hex2bn(&a, "2A3B4C55FF77889AED3F");
// Generate a random number of 128 bits 
BN_rand(a, 128, 0, 0);
// Generate a random prime number of 128 bits 
BN_generate_prime_ex(a, 128, 1, NULL, NULL, NULL);
void printBN(char *msg, BIGNUM * a)
{
// Convert the BIGNUM to number string 
char * number_str = BN_bn2dec(a);
// Print out the number string 
printf("%s %s\n", msg, number_str);
// Free the dynamically allocated memory 
OPENSSL_free(number_str);
}
need to use a*b in our program. However, if they are big numbers, we cannot do that any more; instead, 
we need to use an algorithm (i.e., a function) to compute their products.
There are several libraries that can perform arithmetic operations on integers of arbitrary size. In this 
lab, we will use the Big Number library provided by openssl. To use this library, we will define each big 
number as a BIGNUM type, and then use the APIs provided by the library for various operations, such as 
addition, multiplication, exponentiation, modular operations, etc.
2.1 BIGNUM APIs
All the big number APIs can be found from https://linux.die.net/man/3/bn. In the following, 
we describe some of the APIs that are needed for this lab.
• Some of the library functions requires temporary variables. Since dynamic memory allocation to cre ate BIGNUMs is quite expensive when used in conjunction with repeated subroutine calls, a BN CTX 
structure is created to holds BIGNUM temporary variables used by library functions. We need to 
create such a structure, and pass it to the functions that requires it.
BN_CTX *ctx = BN_CTX_new()
• Initialize a BIGNUM variable.
BIGNUM *a = BN_new()
• There are a number of ways to assign a value to a BIGNUM variable.
• Print out a big number.
EIE553 Lab 1 4
BN_sub(res, a, b);
BN_add(res, a, b);
/* bn_sample.c */ 
#include <stdio.h>
#include <openssl/bn.h> 
#define NBITS 256
void printBN(char *msg, BIGNUM * a)
{
/* Use BN_bn2hex(a) for hex string
* Use BN_bn2dec(a) for decimal string */ 
char * number_str = BN_bn2hex(a); 
printf("%s %s\n", msg, number_str);
OPENSSL_free(number_str);
}
int main ()
{
BN_CTX *ctx = BN_CTX_new();
BIGNUM *a = BN_new(); 
BIGNUM *b = BN_new(); 
BIGNUM *n = BN_new(); 
BIGNUM *res = BN_new();
• Compute res = a −b and res = a + b:
• Compute res = a ∗b. It should be noted that a BN CTX structure is need in this API.
BN_mul(res, a, b, ctx)
• Compute res = a ∗b mod n:
BN_mod_mul(res, a, b, n, ctx)
• Compute res = ac mod n:
BN_mod_exp(res, a, c, n, ctx)
• Compute modular inverse, i.e., given a, find b, such that a ∗ b mod n = 1. The value b is called 
the inverse of a, with respect to modular n.
BN_mod_inverse(b, a, n, ctx);
2.2 A Complete Example
We show a complete example in the following. The program can be found from the Labsetup.zip file 
that you can download from the lab’s webpage. In this example, we initialize three BIGNUM variables, a, 
b, and n; we then compute a ∗b and (ab mod n).
EIE553 Lab 1 5
$ vim bn_sample.c
$ gcc bn_sample.c -lcrypto -o output
$ ./output
Compilation. We can use the following command to compile bn_sample.c (the character after - is the 
letter £, not the number 1; it tells the compiler to use the crypto library).
Click “Open in Terminal”
Create bn_sample.c file
Paste your code into the file, Press Esc on your keyboard, input “: wq” to save file and quit.
Complie bn_sample.c
Run bn_sample.c
// Initialize a, b, n
BN_generate_prime_ex(a, NBITS, 1, NULL, NULL, NULL); 
BN_dec2bn(&b, "273489463796838501848592769467194369268");
BN_rand(n, NBITS, 0, 0);
// res = a*b 
BN_mul(res, a, b, ctx);
printBN("a * b = ", res);
// res = aˆb mod n 
BN_mod_exp(res, a, b, n, ctx); 
printBN("aˆc mod n = ", res);
return 0;
}
EIE553 Lab 1 6
p = F7E75FDC469067FFDC4E847C51F452DF
q = E85CED54AF57E53E092113E62F436F4F 
e = 0D88C3
$ python3 -c ’print("A top secret!".encode("utf-8").hex())’
4120746f702073656372657421
3 Lab Tasks
NOTE: You must explicitly disclose the use of any GenAI tools (e.g., ChatGPT and DeepSeek) if utilized 
in completing the tasks below.
3.1 Task 1: Deriving the Private Key (20 marks)
Let p, q, and e be three prime numbers. Let n = p*q. We will use (e, n) as the public key. Please 
calculate the private key d. The hexadecimal values of p, q, and e are listed in the following. It should be 
noted that although p and q used in this task are quite large numbers, they are not large enough to be secure. 
We intentionally make them small for the sake of simplicity. In practice, these numbers should be at least 
512 bits long (the one used here are only 128 bits).
Hint: The private key d (which is multiplicative inverse of e mod n) can be computed via the extended Euclidean 
algorithm (introduced in Lecture 4). The pseudocode is
Input: 
 - Public key (N, e)
 - Prime factors p and q of N (N = pq)
Output:
 - Private key d
Steps:
1. Compute ϕ(N) = (p - 1) * (q - 1) // Euler's totient function
2. Use the Extended Euclidean Algorithm to find d such that:
 (e * d) ≡ 1 mod ϕ(N)
Extended Euclidean Algorithm:
 Function ExtendedEuclidean(a, b):
 If b == 0:
 Return (a, 1, 0) // gcd(a, b) = a, and coefficients x = 1, y = 0
 Else:
 (gcd, x1, y1) = ExtendedEuclidean(b, a mod b)
 x = y1
 y = x1 - (a // b) * y1
 Return (gcd, x, y)
3. (gcd, d, _) = ExtendedEuclidean(e, ϕ(N))
4. If gcd != 1:
 Return "No modular inverse exists (e and ϕ(N) are not coprime)"
 Else:
 Ensure d is positive by computing d = d mod ϕ(N)
 Return d
3.2 Task 2: Encrypting a Message (20 marks)
Let (e, n) be the public key. Please encrypt the message "A top secret!" (the quotations are not 
included). We need to convert this ASCII string to a hex string, and then convert the hex string to a BIGNUM 
using the hex-to-bn API BN hex2bn(). The following python command can be used to convert a plain 
ASCII string to a hex string.
SEED Labs 2.0 VM (Ubuntu 20.04.2 LTS):
SEED Labs 1.0 VM (Ubuntu 16.04 LTS):
EIE553 Lab 1 7
n = DCBFFE3E51F62E09CE7032E2677A78946A849DC4CDDE3A4D0CB81629242FB1A5
e = 010001 (this hex value equals to decimal 65537) 
M = A top secret!
d = 74D806F9F3A62BAE331FFE3F0A68AFE35B3D2E4794148AACBC26AA381CD7D30D
C = 8C0F971DF2F3672B28811407E2DABBE1DA0FEBBBDFC7DCB67396567EA1E2493F
$ python3 -c
’print(bytes.fromhex("4120746f702073656372657421").decode("utf-8"))’ 
A top secret!
M = I owe you $2000.
M = Launch a missile.
S = 643D6F34902D9C7EC90CB0B2BCA36C47FA37165C0005CAB026C0542CBDB6802F
e = 010001 (this hex value equals to decimal 65537)
n = AE1CD4DC432798D933779FBD46C6E1247F0CF1****95113AA51B450F18116115
The public keys are listed in the followings (hexadecimal). We also provide the private key d to help 
you verify your encryption result.
Requirement: In your lab report, you should change the message to "Your Name + Student ID" instead of using 
"A top secret!" in the above demo.
3.3 Task 3: Decrypting a Message (20 marks)
The public/private keys used in this task are the same as the ones used in Task 2. Please decrypt the following 
ciphertext C, and convert it back to a plain ASCII string.
You can use the following python command to convert a hex string back to to a plain ASCII string 
(works in both VM versions).
Requirement: In your lab report, you should decrypt the ciphertext of "Your Name + Student ID" instead of 
using "A top secret!" in the above demo.
3.4 Task 4: Signing a Message (20 marks)
The public/private keys used in this task are the same as the ones used in Task 2. Please generate a signature 
for the following message (please directly sign this message, instead of signing its hash value):
Please make a slight change to the message M, such as changing $2000 to $3000, and sign the modified 
message. Compare both signatures and describe what you observe.
Requirement: In your lab report, you should change the message to "Your PolyU email address" instead of 
using "I owe you $2000" in the above demo.
3.5 Task 5: Verifying a Signature (20 marks)
Bob receives a message M = "Launch a missile." from Alice, with her signature S. We know that 
Alice’s public key is (e, n). Please verify whether the signature is indeed Alice’s or not. The public key 
and signature (hexadecimal) are listed in the following:
Suppose that the signature above is corrupted, such that the last byte of the signature changes from 2F 
to 3F, i.e, there is only one bit of change. Please repeat this task, and describe what will happen to the 
verification process.
$ python -c ’print("A top secret!".encode("hex"))’
4120746f702073656372657421
EIE553 Lab 1 8
$ openssl s_client -connect www.example.org:443 -showcerts
Certificate chain
0 s:/C=US/ST=California/L=Los Angeles/O=Internet Corporation for Assigned 
Names and Numbers/OU=Technology/CN=www.example.org
i:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert SHA2 High Assurance
Server CA
-----BEGIN CERTIFICATE-----
MIIF8jCCBNqgAwIBAgIQDmTF+8I2reFLFyrrQceMsDANBgkqhkiG9w0BAQsFADBw 
MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMRkwFwYDVQQLExB3
......
wDSiIIWIWJiJGbEeIO0TIFwEVWTOnbNl/faPXpk5IRXicapqiII=
-----END CERTIFICATE-----
1 s:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert SHA2 High 
Assurance Server CA
i:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert High Assurance
EV Root CA
-----BEGIN CERTIFICATE-----
MIIEsTCCA5mgAwIBAgIQBOHnpNxc8vNtwCtCuF0VnzANBgkqhkiG9w0BAQsFADBs 
MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMRkwFwYDVQQLExB3
......
cPUeybQ=
-----END CERTIFICATE-----
3.6 (Optional) Task 6: Manually Verifying an X.509 Certificate (20 marks) (Optional)
In this task, we will manually verify an X.509 certificate using our program. An X.509 contains data about 
a public key and an issuer’s signature on the data. We will download a real X.509 certificate from a web 
server, get its issuer’s public key, and then use this public key to verify the signature on the certificate.
Step 1: Download a certificate from a real web server. We use the www.example.org server in 
this document. Students should choose a different web server that has a different certificate than the 
one used in this document (it should be noted that www.example.com share the same certificate with 
www.example.org). We can download certificates using browsers or use the following command:
The result of the command contains two certificates. The subject field (the entry starting with s:) of 
the certificate is www.example.org, i.e., this is www.example.org’s certificate. The issuer field (the 
entry starting with i:) provides the issuer’s information. The subject field of the second certificate is the 
same as the issuer field of the first certificate. Basically, the second certificate belongs to an intermediate 
CA. In this task, we will use CA’s certificate to verify a server certificate.
If you only get one certificate back using the above command, that means the certificate you get is signed 
by a root CA. Root CAs’ certificates can be obtained from the Firefox browser installed in our pre-built VM. 
Go to the Edit ➔ Preferences ➔ Privacy and then Security ➔ View Certificates. Search 
for the name of the issuer and download its certificate.
Copy and paste each of the certificate (the text between the line containing "Begin CERTIFICATE" 
and the line containing "END CERTIFICATE", including these two lines) to a file. Let us call the first one 
c0.pem and the second one c1.pem.
Step 2: Extract the public key (e, n) from the issuer’s certificate. Openssl provides commands to 
extract certain attributes from the x509 certificates. We can extract the value of n using -modulus. There 
is no specific command to extract e, but we can print out all the fields and can easily find the value of e.
EIE553 Lab 1 9
$ openssl x509 -in c0.pem -text -noout
...
Signature Algorithm: sha256WithRSAEncryption 
84:a8:9a:11:a7:d8:bd:0b:26:7e:52:24:7b:b2:55:9d:ea:30:
89:51:08:87:6f:a9:ed:10:ea:5b:3e:0b:c7:2d:47:04:4e:dd:
...... 
5c:04:55:64:ce:9d:b3:65:fd:f6:8f:5e:99:39:21:15:e2:71: 
aa:6a:88:82
$ cat signature | tr -d ’[:space:]:’
84a89a11a7d8bd0b267e52247bb2559dea30895108876fa9ed10ea5b3e0bc7
......
5c045564ce9db365fdf68f5e****2115e271aa6a8882
Step 3: Extract the signature from the server’s certificate. There is no specific opensslcommand to 
extract the signature field. However, we can print out all the fields and then copy and paste the signature 
block into a file (note: if the signature algorithm used in the certificate is not based on RSA, you can find 
another certificate).
We need to remove the spaces and colons from the data, so we can get a hex-string that we can feed into 
our program. The following command commands can achieve this goal. The tr command is a Linux utility 
tool for string operations. In this case, the -d option is used to delete ":" and "space" from the data.
Step 4: Extract the body of the server’s certificate. A Certificate Authority (CA) generatesthe signature 
for a server certificate by first computing the hash of the certificate, and then sign the hash. To verify the 
signature, we also need to generate the hash from a certificate. Since the hash is generated before the 
signature is computed, we need to exclude the signature block of a certificate when computing the hash. 
Finding out what part of the certificate is used to generate the hash is quite challenging without a good 
understanding of the format of the certificate.
X.509 certificates are encoded using the ASN.1 (Abstract Syntax Notation.One) standard, so if we can 
parse the ASN.1 structure, we can easily extract any field from a certificate. Openssl has a command called 
asn1parse used to extract data from ASN.1 formatted data, and is able to parse our X.509 certificate.
8:d=2 hl=2 l= 3 cons: cont [ 0 ]
10:d=3 hl=2 l= 1 prim: INTEGER :02
13:d=2 hl=2 l= 16 prim: INTEGER
:0E64C5FBC236ADE14B172AEB41C78CB0
... ...
1236:d=4 hl=2 l= 12 cons: SEQUENCE
1238:d=5 hl=2 l= 3 prim: OBJECT :X509v3 Basic Constraints
1243:d=5 hl=2 l= 1 prim: BOOLEAN :255
For modulus (n):
$ openssl x509 -in c1.pem -noout -modulus
Print out all the fields, find the exponent (e):
$ openssl x509 -in c1.pem -text -noout
EIE553 Lab 1 10
$ openssl asn1parse -i -in c0.pem -strparse 4 -out c0_body.bin -noout
$ sha256sum c0_body.bin
The field starting from ,。 is the body of the certificate that is used to generate the hash; the field starting 
from @ is the signature block. Their offsets are the numbers at the beginning of the lines. In our case, the 
certificate body is from offset 4 to 1249, while the signature block is from 1250 to the end of the file. For
X.509 certificates, the starting offset is always the same (i.e., 4), but the end depends on the content length 
of a certificate. We can use the -strparse option to get the field from the offset 4, which will give us the 
body of the certificate, excluding the signature block.
Once we get the body of the certificate, we can calculate its hash using the following command:
Step 5: Verify the signature. Now we have all the information, including the CA’s public key, the CA’s 
signature, and the body of the server’s certificate. We can run our own program to verify whether the 
signature is valid or not. Openssl does provide a command to verify the certificate for us, but students are 
required to use their own programs to do so, otherwise, they get zero credit for this task.
4 Submission
You need to submit a detailed lab report, with screenshots, to describe what you have done 
and what you have observed. You also need to provide explanation to the observations that
are interesting or surprising. Please also list the important code snippets followed by 
explanation. Simply attaching code without any explanation will not receive credits.
OCTET STRING
OBJECT 
NULL

請加QQ:99515681  郵箱:[email protected]   WX:codinghelp



 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:CE 451編程代寫,、代做Python語言程序
  • 下一篇:質(zhì)量流量計(jì)的信號(hào)輸出方式有哪些?
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    戴納斯帝壁掛爐全國售后服務(wù)電話24小時(shí)官網(wǎng)400(全國服務(wù)熱線)
    戴納斯帝壁掛爐全國售后服務(wù)電話24小時(shí)官網(wǎng)
    菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
    菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話2
    美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時(shí)客服熱線
    美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時(shí)
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號(hào)線
    合肥機(jī)場巴士4號(hào)線
    合肥機(jī)場巴士3號(hào)線
    合肥機(jī)場巴士3號(hào)線
  • 上海廠房出租 短信驗(yàn)證碼 酒店vi設(shè)計(jì)