欧美一级a免费放视频,欧美一级a免费放视频_丰满年轻岳欲乱中文字幕电影_欧美成人性一区二区三区_av不卡网站,99久久精品产品给合免费视频,色综合黑人无码另类字幕,特级免费黄片,看黃色录像片,色色资源站无码AV网址,暖暖 免费 日本 在线播放,欧美com

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

ECE371編程代做,、代寫(xiě)Python程序設(shè)計(jì)
ECE371編程代做、代寫(xiě)Python程序設(shè)計(jì)

時(shí)間:2025-05-08  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



ECE371 Neural Networks and Deep Learning
Assignment 1: Image classification by using deep models
Due Date: 23:59, 14
th May, 2025
This assignment aims to train models for flower classification. You can choose either Colab online
environment or local environment. This assignment will worth 15% ofthe final grade. Exercise 1: Fine-tune classification model using MMClassification (50%)
Please complete the fine-tune training based on the pre-training model provided by MMClassification
(https://github.com/open-mmlab/mmpretrain/tree/1.x). You should:
1. Prepare the flower datasets. The flower pictures are provided in flower_dataset.zip. The flower dataset contains flowers from 5 categories: daisy 588, dandelion 556, rose 583, sunflower 536 and tulip 585. Please split the dataset into training set and validation set in a ratio
of 8:2, and organize it into ImageNet format. Detailed steps:
1) Put the training set and validation set under folders named ‘train’ and ‘val’. 2) Create and edit the category name file. Please write all names flower categories into file
‘classes.txt’with each line representing one class. 3) Generate training (optional) and validation sets annotation lists: ‘train.txt’and ‘val.txt’. Each line should contain a filename and its corresponding annotation. Example:
daisy/NAME**.jpg 0
daisy/NAME**.jpg 0
... dandelion/NAME**.jpg 1
dandelion/NAME**.jpg 1
... rose/NAME**.jpg 2
rose/NAME**.jpg 2
... sunflower/NAME**.jpg 3
sunflower/NAME**.jpg 3
... tulip/NAME**.jpg 4
tulip/NAME**.jpg 4
The final file structure should be:
flower_dataset
|--- classes.txt
|--- train.txt
|--- val.txt
| |--- train
| | |--- daisy
|
|
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
val --- daisy
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
This process can be done using Python or other scripting programs. And it can be completed
locally/offline to save the Colab’s time online. Once the dataset has been prepared, please migrate the processed dataset to the project folder, (e.g., ./data). To reduce duplicate uploads, you can Sync the data to google drive
|--- NAME1.jpg
|--- NAME2.jpg

and import it in Colab. 2. Modify the configuration file
Use the _base_ inheritance mechanism to build profiles for fine-tuning, which can be inherited
and modified from any ImageNet-based profile provided by MMClassification. 1) Modify the model configuration. Change the category header to adapt the model to the
number of data categories in our flower dataset. 2) Modify the dataset configuration. Change the data paths for the training set, validation set, the list of dataset annotations, and the category name file. And modify the evaluation method
to use only the top-1 classification error rate. 3) Modify learning rate strategy. Fine-tuning generally uses a smaller learning rate and fewer
training period. Therefore please change them in configuration file. 4) Configuring pre-trained models. Please find the model file corresponding to the original
configuration file from Model Zoo. Then download it to Colab or your local environment
(usually in the checkpointsfolder). Finally you need to configure the path to the pre-trained
model in the configuration file. 3. Complete the finetune training using tools. Please use tools/train.py to fine-tune the model and specify the work path via the work_dir
parameter, where the trained model will be stored. Tune the parameters, or use a different pre-trained model to try to get a higher classification
accuracy. For reference, it is not difficult to achieve classification accuracies above 90% on this
dataset. Exercise 2: Complete the classification model training script (50%)
The provided script main.py is a simple PyTorch implement to classify the flower dataset you’ve
prepared above, but this script is not complete. 1. You’ll be expected to write some code in some code blocks. These are marked at the top of the
block by a #GRADED FUNCTIONcomment, and you’ll write your code in between the ###
START SOLUTION HERE ### and ###END SOLUTION HERE### comments. 2. After coding your function, put your flower datasets flower_dataset to the EX2 folder (EX2/
flower_dataset) and then run this main.py script. 3. If your code is correct, you can obtain the right printed information with loss, learning rate and
accuracy on validation set, and the best model with the highest validation accuracy will be stored
in the Ex2/work_dirfolder. 4. You can modify the configuration or the model in main.pyto beat the original result. (optional)
5. Please write a report with Latex and submit a .pdf file (the main text should not exceed 4
pages, excluding references). Please use this overleaf template https://www.overleaf.com/read/vjsjkdcwttqp#ffc59a . There are detailed report requirements.
Submission requirements:
1. You need to submission all materials to GitHubClassroom. Please create a GitHub account in
advance. . Later we will provide a link of this assignment, click it and you
will get an initial repository containing two folders named: Ex1 with flower_dataset.zipin it, and
Ex2 with main.pyin it. You need to upload all the materials below to your repository:
1) For exercise 1, please put your configuration file and the saved trained model in Ex1;
2) For exercise 2, please put your report, completed script file and the saved trained model
(auto saved in work_dir) in Ex2. 2. Please note that, the teaching assistants may ask you to explain the meaning of the program, to
ensure that the codes are indeed written by yourself. Plagiarism will not be tolerated. We may
check your code. 3. The deadline is 23:59 PM, 14
th May. For each day of late submission, you will lose 10% of your
mark in corresponding assignment. If you submit more than three days later than the deadline, you
will receive zero in this assignment. No late submission emails or message will be replied.

請(qǐng)加QQ:99515681  郵箱:[email protected]   WX:codinghelp




 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:CPT206代做、代寫(xiě)Java編程語(yǔ)言
  • 下一篇:CSC1002代寫(xiě),、代做Python編程設(shè)計(jì)
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析,?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析,?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線)
    戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)
    菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
    菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話2
    美的熱水器售后服務(wù)技術(shù)咨詢(xún)電話全國(guó)24小時(shí)客服熱線
    美的熱水器售后服務(wù)技術(shù)咨詢(xún)電話全國(guó)24小時(shí)
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
  • 短信驗(yàn)證碼 酒店vi設(shè)計(jì) 投資移民

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045