欧美一级a免费放视频,欧美一级a免费放视频_丰满年轻岳欲乱中文字幕电影_欧美成人性一区二区三区_av不卡网站,99久久精品产品给合免费视频,色综合黑人无码另类字幕,特级免费黄片,看黃色录像片,色色资源站无码AV网址,暖暖 免费 日本 在线播放,欧美com

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

BISM3206代做,、代寫Python編程語言
BISM3206代做,、代寫Python編程語言

時(shí)間:2025-06-04  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)


O-BISM3206 ver or Under Asking -BISM3206

Classifying Property

Price Outcomes in the

Australian Market

  
BISM3206 Assignment

2025 S1 – Assignment

Context

The Australian real estate market is one of the most dynamic and competitive in the world, offering a

wide range of properties to both buyers and sellers. For homeowners looking to sell, setting the right

price is a critical, and often emotional, decision. After all, property transactions are among the most

significant financial events in a person's life.

Sellers typically set a listing price based on what they believe their home is worth and what the market

might bear. But things don’t always go as planned. Some properties attract intense buyer interest and

sell for more than the asking price. Others fall short, forcing the seller to accept less than they’d hoped.

If sellers had a way to estimate in advance whether their listed price is likely to be exceeded or undercut,

they could make more informed pricing decisions, better manage expectations, and potentially

maximize their return.

In this assignment, your task is to build a binary classification model that predicts whether a property

will be sold at a higher or lower price than the advertised price set by the seller.

Target Variable

The target variable price_outcome indicates whether a property was sold at a higher, equal or lower

price compared to the listing price.

The values in the price_outcome column are:

 Higher: Sold price is greater than the listed price

 Equal: Sold price is the same as the listed price

 Lower: Sold price is equal to or less than the listed price

This is a binary classification problem; therefore, you should not include any data where the target

value is ‘Equal’. Your model should learn to predict this outcome using the available features of each

property outlined below.

Dataset

You are provided with a dataset of 6,957 recently sold properties, between February 2022 and February

2023. The predictor variables are:

1. property_address: the address of the property

2. property_suburb : The suburb the property resides in

3. property_state : The state which the property resides in

4. listing_description: The description of the house provided on the listing

2025 S1 – Assignment

5. listed_date: The date the property was listed for sale

6. listed_price: The 代寫B(tài)ISM3206 ver or Under Asking -BISM3206price the property was listed for

7. days_on_market: The number of days the property was on the market

8. number_of_beds: The number of bedrooms on the property

9. number_of_baths: The number of bathrooms on the property

10. number_of_parks: The number of parking spots on the property

11. property_size: The size of the property in square meters

12. property_classification: The type of property (House/Unit/Land)

13. property_sub_classification: The sub-type of the property

14. suburb_days_on_market: The average days in market that a property is on sale for in a suburb

15. suburb_median_price: The average median property price in a suburb

  
Deliverables

You must submit the following:

1. A written report (via TurnItIn).

2. A Jupyter Notebook (via the Assignment Submission link).

Your report may be structured as:

 Four main sections: a) Introduction, b) Model Building, c) Model Evaluation, d) Findings &

Conclusion, or

 Three main sections: 1) Introduction, 2) Model Building & Evaluation, 3) Findings &

Conclusion

Both structures are acceptable.

Visuals & Output

 You may include up to 8 charts or tables in your report.

 All visuals must be supported by the analysis in your Jupyter Notebook.

 Your notebook must run without errors — only analysis up to the last successfully run cell will

be marked.

 Do not edit the original Assignment_Data.xlsx file before importing.

Formatting and professionalism

 Maximum 1500 words (+/- 10%) – including title page, charts and tables.

 Use formal language and full sentences (no bullet points).

 Times New Roman, 12pt font, single-spaced.

 No appendices allowed.

 Reports can be written in first person if preferred.

Submission

Submit two files with the following naming convention:

StudentID.pdf and StudentID.ipynb

 Written report: via TurnItIn (PDF or DOCX format only)

2025 S1 – Assignment

 Jupyter Notebook: via Assignment Submission link

Example: If your student ID is 12345678, submit:

 12345678.pdf

 12345678.ipynb

Do not zip your files.

  
Note on Academic Integrity

This is an individual assignment. You are encouraged to discuss ideas with your peers but must submit

your own work. Suspected plagiarism or collusion will be treated in line with university policy.


請(qǐng)加QQ:99515681  郵箱:[email protected]   WX:codinghelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:宜卡花唄官網(wǎng)客服電話全面升級(jí),,宜卡花唄以AI技術(shù)重塑金融服務(wù)體驗(yàn)新標(biāo)桿
  • 下一篇:代做159.342 、代寫Operating Systems 編程設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    「多多評(píng)價(jià)助手」智能補(bǔ)單助手 | 出評(píng)軟件自動(dòng)開團(tuán)工具
    「多多評(píng)價(jià)助手」智能補(bǔ)單助手 | 出評(píng)軟件自
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析,?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線)
    戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)
    菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
    菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話2
    美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)客服熱線
    美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
  • 短信驗(yàn)證碼 酒店vi設(shè)計(jì) 投資移民

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045